If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+81k-42=0
a = 6; b = 81; c = -42;
Δ = b2-4ac
Δ = 812-4·6·(-42)
Δ = 7569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7569}=87$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-87}{2*6}=\frac{-168}{12} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+87}{2*6}=\frac{6}{12} =1/2 $
| x+.257=6.734 | | 14x^2=2x+52 | | 4z^2-7z-11=0 | | 2/3x5/9=7/12 | | (x-5)+30=90 | | 3/2n+5=-13 | | j+3=808 | | 42k^2-86k+4=0 | | (x)-144=90 | | xx/5=30 | | z−54=20 | | 10=j/8 | | –5f+10+19f=14f+10 | | x4+40=360 | | 3(2x-8)+4(x+2)=16 | | -4(3x+5)+6=⅔(9x+15) | | 3h^2+14h+11=0 | | 2w^2+18w=-3 | | 15a+18=38 | | 3q^2+8q-16=0 | | −10=s/4 | | 8k^2+100k-52=0 | | (x-2)+40=90 | | 6x-(-8x)=14 | | 2s^2-21s-11=0 | | 2y^2-31y+15=0 | | 6d+4=2d-12 | | 2c-21+3c=19 | | +2.3x=23.5 | | 5x+23=743 | | 7s^2+29s+4=0 | | 3a-2.2=9.8 |